Abstract

We recall some important results, due to Kostant and others, about invariant convex cones in Lie algebras and positive energy representations. We apply these results to a study of positive energy representation of the conformal groups in n dimensions, and we present a proof of the converse of a theorem attributed to I.E. Segal, which relates positive energy representations to positivity of the action of the generator of time translations for representations of the n-dimensional conformal group.We also discuss related notions of deformation and contractions of Lie algebras and describe a deformation of the Poincaré subalgebra of the conformal algebra which generalizes the usual treatment. We consider the positive energy representations of the anti-deSitter subalgebras in the physically important four dimensional case, and apply this generalization to argue that the singelton representations cannot have nontrivial contractions to representations of the Poincaré algebra. We believe that our results represent a sharpening of the meaning of "kinematical confinement", introduced by Flato, Fronsdal and their coworkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.