Abstract

We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras. Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.

Highlights

  • One of the more striking results of the invariant theory of reflection groups is certainly the following: ifW is a finite group of n × n matrices, there is a graded W -module decomposition of the polynomial ring S = K[x], in variables x = {x1, x2, . . . , xn}, as a tensor product(i) S ≃ SW ⊗ SW, (1)if and only if W is a group generated by reflections

  • S affords the natural W -module structure obtained by considering it as the symmetric space on the defining vector space X∗ for W, e.g., (i) We assume throughout that K is a field containing Q. 1365–8050 c 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France w · f (x) = f (w · x)

  • To finish parsing (1), recall that SW stands for the coinvariant space, i.e., the W -module defined as SW := S/ S+W, (2)

Read more

Summary

Introduction

One of the more striking results of the invariant theory of reflection groups is certainly the following: if. The context for the present paper is the algebra T = K x of noncommutative polynomials, with W module structure on T obtained by considering it as the tensor space on the defining space X∗ for W. In the special case when W is the symmetric group Sn, we elucidate a relationship between the space SW and the subalgebra T W of W -invariants in T. We consider N = T Sn as a tower of Sd-modules under the “place-action” and realize SSn inside N as a subspace Λ of invariants for this action. This leads to a decomposition of N analogous to (1). (4) may be refined to a statement about “shape” enumeration

Vector space structure of SS
Dimension enumeration
Algebra and coalgebra structures of SS
Vector space structure of N
Dimension enumeration and shape grading
Algebra and coalgebra structures of N
Swapping places in Td and Nd
The place-action structure of N
Λ meets SS
Proof of main result
Explicit description of the Hopf algebra structure of C
Other directions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call