Abstract
In this paper, we investigate the (2+1)-dimensional mixed fractional Broer-Kaup-Kupershmidt system (MFBKKS) with Riemann–Liouville time fractional derivative and integer order y-derivative. This system models dispersive and nonlinear long gravity waves propagating in shallow water in two horizontal directions with time memories. Lie symmetry analysis and invariant subspace method are distinctly employed to construct the exact solutions to the MFBKKS. Initially, the Lie algebras admitted by MFBKKS are obtained with the help of Lie symmetry analysis. Then, we establish the commutative table, adjoint relations and adjoint transformation matrix. Specifically, the one-dimensional optimal system is established correspondingly, and symmetry reduction is performed. In particular, (2+1)-dimensional MFBKKS is reduced to (1+1)-dimensional mixed fractional system using Erdélyi-Kober fractional differential operator. Further, the power series solution of MFBKKS is constructed via power series method. By applying invariant subspace method, we obtain more exact solutions of MFBKKS. In addition, the conservation laws are derived by new Noether theorem. Finally, the three-dimensional diagrams of some obtained solutions are demonstrated utilizing Matlab for visualization, and some of the calculations were verified using computational packages Maple for symbolic computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.