Abstract
A deep analysis of the Lyapunov exponents for stationary sequence of matrices going back to Furstenberg, for more general linear cocycles by Ledrappier, and generalized to the context of non-linear cocycles by Avila and Viana, gives an invariance principle for invariant measures with vanishing central exponents. In this paper, we give a new criterium formulated in terms of entropy for the invariance principle and, in particular, obtain a simpler proof for some of the known invariance principle results. As a byproduct, we study ergodic measures of partially hyperbolic diffeomorphisms whose center foliation is one-dimensional and forms a circle bundle. We show that for any such C 2 C^2 diffeomorphism which is accessible, weak hyperbolicity of ergodic measures of high entropy implies that the system itself is of rotation type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.