Abstract

Dissipative particle dynamics (DPD) is a well-established mesoscale simulation method. However, there have been long-standing ambiguities regarding the dependence of its (purely repulsive) force field parameter on temperature as well as the variation of the resulting experimental observables, such as diffusivity or surface tension, with coarse-graining (CG) degree. Here, we rederive the temperature dependence of DPD interaction parameter and revisit the role of the CG degree in standard DPD simulations. Consequently, we derive a scaling of the input variables that renders the system properties invariant with respect to CG degree and illustrate the versatility of the method by computing the surface tensions of binary solvent mixtures. We then extend this procedure to many-body dissipative particle dynamics and, by computing surface tensions of the same mixtures at a range of CG degrees, demonstrate that this newer method, which has not been widely applied so far, is also capable of simulating complex fluids of practical interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.