Abstract
The dependence of the electrical resistance on materials’ geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ–generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matrix. Furthermore, the barrier height is tuned to be negligible by matching the electron affinity of silicone rubber to the work function of silver. The stretching results in the electron flow without additional scattering in the silicone rubber matrix. The transport is changed to quantum tunneling if the barrier height is gradually increased by using different matrix polymers with smaller electron affinities, such as ethyl vinyl acetates and thermoplastic polyurethane. The tunneling current decreases with increasing strain, which is accurately described by the Simmons approximation theory. The tunable transport in nanocomposites provides an advancement in the design of stretchable conductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.