Abstract

AbstractShortly before the beginning of the 2017–2018 winter rainy season, one of the largest fires in California (USA) history (Thomas fire) substantially increased the susceptibility of steep slopes in Santa Barbara and Ventura Counties to debris flows. On 9 January 2018, before the fire was fully contained, an intense burst of rain fell on the portion of the burn area above Montecito, California. The rainfall and associated runoff triggered a series of debris flows that mobilized ∼680,000 m3 of sediment (including boulders >6 m in diameter) at velocities up to 4 m/s down coalescing urbanized alluvial fans. The resulting destruction (including 23 fatalities, at least 167 injuries, and 408 damaged homes) underscores the need for improved understanding of debris-flow runout in the built environment, and the need for a comprehensive framework to assess the potential loss from debris flows following wildfire. We present observations of the inundation, debris-flow dynamics, and damage from the event. The data include field measurements of flow depth and deposit characteristics made within the first 12 days after the event (before ephemeral features of the deposits were lost to recovery operations); an inventory of building damage; estimates of flow velocity; information on flow timing; soil-hydrologic properties; and post-event imagery and lidar. Together, these data provide rare spatial and dynamic constraints for testing debris-flow runout models, which are needed for advancing post-fire debris-flow hazard assessments. Our analysis also outlines a framework for translating the results of these models into estimates of economic loss based on an adaptation of the U.S. Federal Emergency Management Agency’s Hazus model for tsunamis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.