Abstract

Accumulated evidence supports the beneficial role of inulin in alleviating metabolic dysfunction-associated fatty liver disease (MAFLD) by modulating gut microbiota. However, the underlying mechanisms are not fully understood. Here we used high-fat diet (HFD)-induced laying hen model of MAFLD to investigate the effect of inulin on ameliorating MAFLD and found that the inulin-enriched Megamonas genus was inversely correlated with hepatic steatosis-related parameters. Oral administration of a newly isolated commensal bacterium by culturomics, M. funiformis CML154, to HFD-fed hens and mice ameliorated MAFLD, changed liver gene expression profiles, and increased intestinal propionate concentration. Further evidence demonstrated that the anti-MAFLD effect of M. funiformis CML154 is attributed to propionate-mediated activation of the APN-AMPK-PPARα signaling pathway, thereby inhibiting fatty acid de novo synthesis and promoting β-oxidation. These findings establish the causal relationships among inulin, M. funiformis, and MAFLD, and suggest that M. funiformis CML154 is a probiotic candidate for preventative or therapeutic intervention of MAFLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.