Abstract

Advances in deep learning make monocular vision approaches attractive for the autonomous driving domain. This work investigates a method for estimating the speed of the ego-vehicle using state-of-the-art deep neural network based optical flow and single-view depth prediction models. Adopting a straightforward intuitive approach and approximating a single scale factor, several application schemes of the deep networks are evaluated and meaningful conclusions are formulated, such as: combining depth information with optical flow improves speed estimation accuracy as opposed to using optical flow alone; the quality of the deep neural network results influences speed estimation performance; using the depth and optical flow data from smaller crops of wide images degrades performance. With these observations in mind, a RMSE of less than 1 m/s for ego-speed estimation was achieved on the KITTI benchmark using monocular images as input. Limitations and possible future directions are discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call