Abstract

Attribute subset selection is an important issue in data mining and information processing. However, most automatic methodologies consider only the relevance factor between samples while ignoring the diversity factor. This may not allow the utilization value of hidden information to be exploited. For this reason, we propose a hybrid model named intuitionistic fuzzy (IF) rough set to overcome this limitation. The model combines the technical advantages of rough set and IF set and can effectively consider the above-mentioned statistical factors. First, fuzzy information granules based on IF relations are defined and used to characterize the hierarchical structures of the lower and upper approximations of IF rough set within the framework of granular computing. Then, the computation of IF rough approximations and knowledge reduction in IF information systems are investigated. Third, based on the approximations of IF rough set, significance measures are developed to evaluate the approximation quality and classification ability of IF relations. Furthermore, a forward heuristic algorithm for finding one optimal reduct of IF information systems is developed using these measures. Finally, numerical experiments are conducted on public datasets to examine the effectiveness and efficiency of the proposed algorithm in terms of the number of selected attributes, computational time, and classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.