Abstract

In a paper by Cook and Reckhow (1979), it is shown that any two classical Frege systems polynomially simulate each other. The same proof does not work for intuitionistic Frege systems, since they can have nonderivable admissible rules. (The rule A/B is derivable if the formula A → B is derivable. The rule A/B is admissible if for all substitutions σ, if σ(A) is derivable, then σ(B) is derivable.) In this paper, we polynomially simulate a single admissible rule. Therefore any two intuitionistic Frege systems polynomially simulate each other. Bibliography: 20 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.