Abstract
Abstract The evolution and structure of stratospheric intrusions into the upper troposphere (UT) over the northern tropical Pacific is examined in terms of both potential vorticity (PV) and ozone (O3). Analysis of 20 years of NCEP–NCAR reanalysis PV shows that the intrusion events have remarkably similar evolution and structure at 350 K, with all events producing narrow tongues of high PV that have an almost north–south orientation and last around 3 days. Nearly all events extend up into the lower stratosphere, but only for a small percentage is there deep downward penetration. The intrusions explain a large amount of the observed variability in upper tropospheric O3 above Hilo, Hawaii, with large values occurring when a tongue of high PV passes over Hilo and low values when Hilo is just upstream of a high-PV tongue. There is also an increase in total column ozone within the PV tongues, but for most intrusions the increase is relatively small. The relationship between deep convection, as diagnosed by sate...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.