Abstract

The Viimsi peninsula is located north-east of Tallinn, capital of Estonia. The Cambrian-Vendian (Cm-V) aquifer system is a sole source of drinking water in the area. Historically, the groundwater exploitation has led to freshening of groundwater in the peninsula, but in recent years an increase in chloride concentrations and enrichment in δ18O values has been detected, but in recent years hydrochemical parameters indicate an increasing influence of a saline water source. The exact origin of this saline water has remained unclear. The aim of the current study is to elucidate whether the increase in Cl− concentrations is related to seawater intrusion or to the infiltration of saline water from the underlying crystalline basement. To identify the source of salinity, chemical composition of the groundwater and the isotope tracers (e.g., δ18O and radium isotopes) were studied in the Viimsi peninsula in the period from 1987 to 2018. Our results show that chemical composition of Cm-V groundwater in the peninsula is clearly controlled by three-component mixing between glacial palaeogroundwater, saline water from the underling crystalline basement and modern meteoric water. The concentrations of Ra are also significantly affected by the mixing, but the spatial variation of radium isotopes (226Ra and 228Ra) suggests the widespread occurrence of the U in the surrounding sedimentary sequence. Our hypothesis is that, in addition to U originating from the crystalline basement, some U could be associated with secondary U deposits in sedimentary rocks. The formation of these secondary U deposits could be related to glacial meltwater intrusion in the Pleistocene. Although the results suggest that the infiltration of saline groundwater from the underlying crystalline basement as the main source of salinity in the study area, the risk of seawater intrusion in the future cannot be ruled out. It needs to be highlighted that the present groundwater monitoring networks may not be precise enough to detect the potential seawater intrusion and subsequent changes in water quality of the Cm-V aquifer system in the Viimsi peninsula.

Highlights

  • The growing urbanisation in coastal areas rises the demand for water; an increase in groundwater abstraction can lead to a subsequent lowering of groundwater levels and deterioration in groundwater quality

  • The isotopic composition of groundwater is more uniform in the upper Voronka aquifer (δ18 O ≈ −20.5‰) and Cl− content there is no higher than

  • 2018, were used to study the causes of the observed water quality changes induced by groundwater abstraction on the Viimsi peninsula near Tallinn, Estonia

Read more

Summary

Introduction

The growing urbanisation in coastal areas rises the demand for water; an increase in groundwater abstraction can lead to a subsequent lowering of groundwater levels and deterioration in groundwater quality. One of the reasons for decline in water quality is groundwater salinisation through intrusion of seawater or relict saline groundwater from adjacent aquifers [1,2,3,4,5,6]. These processes could initiate chemical reactions between the aquifer-forming rocks and groundwater, when the composition of groundwater is changed by mixing between the intruding saltwater and fresh groundwater originally occupying a coastal aquifer [6,7,8]. The Cm-V groundwater originates from glacial meltwater of the Scandinavian

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call