Abstract
Intrusion of a liquid droplet into a hexagonal close-packed array of spheres under gravity is investigated using analytical methods and volume-of-fluid simulations. Four regimes of ultimate fluid behavior are identified: (A) no liquid imbibition into the bed, (B) trapping of liquid high in the bed, (C) liquid descending to the bottom of the bed, and (D) liquid spreading around the surface of all particles. These regimes are mapped based on the contact angle and Bond number of the system. Many aspects of the dynamics and ultimate liquid behavior are captured using a simplified model of a mass of liquid moving under gravity in a vertical capillary of undulating cross-sectional area. This simplified model is used to form momentum transport equations with four forms of nondimensional time, which are shown to collapse the simulation data with different fluid parameters in different regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.