Abstract
Intrusion detection systems (IDS) are a fundamental defence component in the architecture of the current telecommunication systems. Misuse detection is one of the different approaches to create IDS. It is based on the automatic generation of detection rules from labelled examples. Such examples are either attacks or normal situations. From this perspective the problem can be viewed as a supervised classification one. In this sense, this paper proposes the use of XCS as a classification technique to aid in the tasks of misuse detection in IDS systems. The final proposed XCS variant includes the use of hedged linguistic fuzzy classifiers to allow for interpretability. The use of this linguistic fuzzy approach provides with both the possibility of testing human designed detectors and a posteriori human fine tuning of the models obtained. To evaluate the performance not only several classic classification problems as Wine or Breast Cancer datasets are considered, but also a problem based on real data, the KDD-99. This latter problem, the KDD-99, is a classic in the literature of intrusion systems. It shows that with simple configurations the proposed variant obtains competitive results compared with other techniques shown in the recent literature. It also generates human interpretable knowledge, something very appreciated by security experts. In fact, this effort is integrated into a global detection architecture, where the security administrator is guiding part of the intrusion detection (and prevention) process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.