Abstract
Intrusion detection is the key research direction of network security. With the rapid growth of network data and the enrichment of intrusion methods, traditional detection methods can no longer meet the security requirements of the current network environment. In recent years, the rapid development of deep learning technology and its great success in the field of imagery have provided a new solution for network intrusion detection. By visualizing the network data, this paper proposes an intrusion detection method based on deep learning and transfer learning, which transforms the intrusion detection problem into image recognition problem. Specifically, the stream data visualization method is used to present the network data in the form of a grayscale image, and then a deep learning method is introduced to detect the network intrusion according to the texture features in the grayscale image. Finally, transfer learning is introduced to improve the iterative efficiency and adaptability of the model. The experimental results show that the proposed method is more efficient and robust than the mainstream machine learning and deep learning methods, and has better generalization performance, which can detect new intrusion methods more effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.