Abstract

Intrusion Detection System (IDS) can reduce the losses caused by intrusion behaviors and protect users’ information security. The effectiveness of IDS depends on the performance of the algorithm used in identifying intrusions. And traditional machine learning algorithms are limited to deal with the intrusion data with the characteristics of high-dimensionality, nonlinearity and imbalance. Therefore, this paper proposes an Intrusion Detection algorithm based on Image Enhanced Convolutional Neural Network (ID-IE-CNN). Firstly, based on the image processing technology of deep learning, oversampling method is used to increase the amount of original data to achieve data balance. Secondly, the one-dimensional data is converted into two-dimensional image data, the convolutional layer and the pooling layer are used to extract the main features of the image to reduce the data dimensionality. Thirdly, the Tanh function is introduced as an activation function to fit nonlinear data, a fully connected layer is used to integrate local information, and the generalization ability of the prediction model is improved by the Dropout method. Finally, the Softmax classifier is used to predict the behavior of intrusion detection. This paper uses the KDDCup99 data set and compares with other competitive algorithms. Both in the performance of binary classification and multi-classification, ID-IE-CNN is better than the compared algorithms, which verifies its superiority.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.