Abstract

In robotics, the use of a classification framework which produces scores with inappropriate confidences will ultimately lead to the robot making dangerous decisions. In order to select a framework which will make the best decisions, we should pay careful attention to the ways in which it generates scores. Precision and recall have been widely adopted as canonical metrics to quantify the performance of learning algorithms, but for robotics applications involving mission-critical decision making, good performance in relation to these metrics is insufficient. We introduce and motivate the importance of a classifier’s introspective capacity: the ability to associate an appropriate assessment of confidence with any test case. We propose that a key ingredient for introspection is a framework’s potential to increase its uncertainty with the distance between a test datum its training data. We compare the introspective capacities of a number of commonly used classification frameworks in both classification and detection tasks, and show that better introspection leads to improved decision making in the context of tasks such as autonomous driving or semantic map generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.