Abstract

BackgroundThe AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. In flowers, AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers.ResultsTransgenic plants expressing a copy of the coding region of AIL6 in the context of 7.7 kb of 5′ sequence and 919 bp of 3′ sequence (AIL6:cAIL6-3′) fail to fully complement AIL6 function when assayed in the ant-4 ail6-2 double mutant background. In contrast, a genomic copy of AIL6 with the same amount of 5′ and 3′ sequence (AIL6:gAIL6-3′) can fully complement ant-4 ail6-2. In addition, a genomic copy of AIL6 with 590 bp of 5′ sequence and 919 bp of 3′ sequence (AIL6m:gAIL6-3′) complements ant-4 ail6-2 and contains all regulatory elements needed to confer normal AIL6 expression in inflorescences. Efforts to map cis-regulatory elements reveal that the third intron of AIL6 contains enhancer elements that confer expression in young flowers but in a broader pattern than that of AIL6 mRNA in wild-type flowers. Some AIL6:gAIL6-3′ and AIL6m:gAIL6-3′ lines confer an over-rescue phenotype in the ant-4 ail6-2 background that is correlated with higher levels of AIL6 mRNA accumulation.ConclusionsThe results presented here indicate that AIL6 intronic sequences serve as transcriptional enhancer elements. In addition, the results show that increased expression of AIL6 can partially compensate for loss of ANT function in flowers.

Highlights

  • The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots

  • AIL6 acts with ANT and AINTEGUMENTALIKE7/PLETHORA7 (AIL7/PLT7) to maintain the shoot apical meristem during vegetative development and works in a redundant fashion with AINTEGUMENTALIKE5/PLETHORA5 (AIL5/PLT5) and AIL7 to control shoot phyllotaxy [5, 6]

  • Intronic sequences are required for complementation of AIL6 function in ant ail6 flowers To define the genomic regions required for AIL6 function in flower development, ant-4/+ ail6-2 plants were transformed with a transgene containing the AIL6 coding region in a genomic context of 7.7 kb of 5′ sequence and 919 bp of 3′ sequence (i.e. AIL6:cAIL6-3′; Fig. 1a)

Read more

Summary

Introduction

The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers. AIL6 regulates multiple processes during Arabidopsis root and shoot development, largely in a redundant fashion with other. AIL6 acts redundantly with ANT to regulate floral organ initiation, growth, identity specification and patterning [4]. AIL6 function is required for root formation in combination with

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.