Abstract

Gene regulatory effects of microRNAs at a posttranscriptional level have been established over the last decade. In this study, we analyze the interaction networks of mRNA translation regulation through intronic miRNA, under various tissue-specific cellular contexts, taking into account the thermodynamic affinity, chemical kinetics, co-localization, concentration levels, network parameters and the presence of competitive interactors. This database, and analysis has been made available through an open-access web-server, miRiam, to promote further exploration. Here we report that expression of genes involved in Apoptosis Processes, Immune System Processes, Translation Regulator Activities, and Molecular Transport Activities within the cell are predominately regulated by miRNA mediation. Our findings further indicate that this regulatory effect has a profound effect in controlling protein crowding inside the cell. A miRNA mediated gene expression regulation serves as a temporal regulator, allowing the cellular machinery to temporarily ‘pause’ the translation of mRNA, indicating that the miRNA–mRNA interactions may be important for governing the optimal usage of cell volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.