Abstract

Intron-targeted gene insertion strategy using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated Cas9) has been shown to be a potential tool for crop genetic improvement by targeted mutagenesis or gene replacement of an elite allele into widely cultivated rice varieties. The rice blast resistant protein Pi-ta, differs from its susceptible counterpart, pi-ta, by a single amino acid in exon 2. To create new materials resistant to the rice blast disease, we inserted a genomic fragment containing the exon 2 and 3′ untranslated region (3′ UTR) of Pi-ta into intron 1 of pi-ta in rice materials susceptible to rice blast using the intron-targeted insertion strategy. The gene insertion frequency was 3.8%. Several novel transgene-free progeny with stably inherited homozygous insert were identified in the T1 generation, which have been crossed to rice germplasm bearing other resistance gene (R gene) for pyramiding of R genes. This work verified the feasibility of using the genome editing technology in improvement of qualitative agronomic trait in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call