Abstract

The expression of intron-containing messages has been shown to occur in a variety of diseases including lactic acidosis, Cowden Syndrome, and several cancers. However, it is unknown whether these intron-containing messages result in protein production in vivo. Indeed, intron-containing RNAs are typically retained in the nucleus, targeted for degradation, or are repressed translationally. Here, we show that during vascular lesion formation in rats, an alternative isoform of the helix-loop-helix transcription factor Id3 (Id3a) generated by intron retention is abundantly expressed. We demonstrate that Id3 is expressed early in lesion formation when the proliferative index of the neointima is highest and that Id3 promotes smooth muscle cell (SMC) proliferation and S-phase entry and inhibits transcription of the cell-cycle inhibitor p21(Cip1). Using an Id3a-specific antibody developed by our laboratory, we show that Id3a protein is induced during vascular lesion formation and that Id3a expression peaks late when the proliferative index is low or declining and extensive apoptosis is observed. Furthermore, Id3a fails to promote SMC growth and S-phase entry or to inhibit p21(Cip1) promoter transactivation. In contrast, Id3a stimulates SMC apoptosis and inhibits endogenous Id3 production. Adenoviral delivery of Id3a inhibited lesion formation in balloon-injured rat carotid arteries in vivo. These data describe a novel feedback loop whereby intron retention generates an Id3 isoform that acts to limit SMC growth during vascular lesion formation, providing the first evidence that regulated intron retention can modulate a pathologic process in vivo.

Highlights

  • The expression of intron-containing messages has been shown to occur in a variety of diseases including lactic acidosis, Cowden Syndrome, and several cancers

  • We demonstrate that Id3 is expressed early in lesion formation when the proliferative index of the neointima is highest and that Id3 promotes smooth muscle cell (SMC) proliferation and S-phase entry and inhibits transcription of the cell-cycle inhibitor p21Cip1

  • Using an Id3aspecific antibody developed by our laboratory, we show that Id3a protein is induced during vascular lesion formation and that Id3a expression peaks late when the proliferative index is low or declining and extensive apoptosis is observed

Read more

Summary

EXPERIMENTAL PROCEDURES

Cell Culture—Primary rat aortic SMCs were obtained from adult male Sprague-Dawley rats by enzymatic digestion and grown in Dulbecco’s modified Eagle’s medium/F-12 (1:1) (Invitrogen) with 20% fetal bovine serum (HyClone, Logan, UT). Following the establishment of a cultured line, cells were cultured in 10% fetal bovine serum. Id3Ϫ/Ϫ and wild-type littermate control mouse aortic SMCs were prepared as described above. Adenoviral Expression—The construction of Ad-Id3 and Ad-Id3a has been described previously (11).

Intron Retention Regulates Vascular Lesion Formation
RESULTS
Recent data provide evidence that all of the functions of the
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call