Abstract

Plant growth-promoting rhizobacteria provide endurance during environmental stress conditions. Previously, we have shown that the interaction of the halotolerant diazotrophic bacteria Brachybacterium saurashtrense JG06 induces physio-biochemical and molecular changes in Arachis hypogaea under nitrogen starvation conditions. Here we deciphered the role of a novel gene AhBINR that was differentially overexpressed in A. hypogaea after interaction with B. saurashtrense JG06 under nitrogen deficit conditions. Overexpression of the AhBINR gene in the model plant (tobacco) showed higher growth parameters (root length, shoot length, fresh weight, and dry weight) under nitrogen starvation and salt stress in comparison to the wild type and vector control. Transgenic plants were enabled with a higher photosynthesis rate, which provides the support for better performance under N2 starvation and salt stress. Results showed that the transgenic plants overexpressing the AhBINR gene had better physiological status and lower ROS accumulation under adverse conditions. Microarray transcriptome analysis showed that the transcription factors, biotic and abiotic stress, photosynthesis, and metabolism-related genes were differentially expressed (total 736 and 6530 genes were expressed under nitrogen deficit and salt stress conditions, respectively at a 5-fold change level) in comparison to wild type plants. Overall results showed the involvement of the AhBINR gene in the activation of the abiotic stress (nitrogen starvation and salt stress) related pathways, which can be overexpressed after legume-rhizobacterial interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call