Abstract

The uses of hexaploid tritordeum as a crop for human consumption require improvement of its bread-making quality. For this purpose chromosome 1D of bread wheat with the Glu-D1 allele encoding for high-molecular-weight glutenin subunits Dx5+Dy10 was introgressed into tritordeum. Different primary tritordeums were crossed with wheats carrying subunits Dx5+Dy10. The hybrids were backcrossed to tritordeum and seeds for the next backcross (or selfing) were selected for the presence of chromosome 1D using SDS-PAGE. Forty two chromosome plants carrying subunits Dx5+Dy10 were obtained after two backcrosses and selfing. Chromosome characterization of these plants using fluorescence in situ hybridisation (FISH) proved that either chromosome substitution 1H(ch)/1D or 1A/1D had been obtained. A homozygous plant with a translocation of the entire 1DL arm to 1H(ch)S was also obtained. The complete chromosome substitution lines have better agronomic characteristics than the lines with translocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.