Abstract

Many problems in the natural and engineering sciences can be modeled as evolution processes. Mathematically this leads to either discrete or continuous dynamical systems, i.e. to either difference or differential equations. Usually such dynamical systems are nonlinear or even discontinuous and depend on parameters. Consequently the study of qualitative behaviour of their solutions is very difficult. Rather effective method for handling dynamical systems is the bifurcation theory, when the original problem is a perturbation of a solvable problem, and we are interested in qualitative changes of properties of solutions for small parameter variations. Nowadays the bifurcation and perturbation theories are well developed and methods applied by these theories are rather broad including functional-analytical tools and numerical simulations as well [1–13].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.