Abstract

This book continues the authoritative and established edited series of theoretical ecology books initiated by Robert May which helped pave the way for ecology to become a more robust theoretical science, encouraging the modern biologist to better understand the mathematics behind their theories. This latest instalment in the Theoretical Ecology series builds on the legacy of its predecessors with a completely new set of contributions. Rather than placing emphasis on historical ideas in theoretical ecology, the editors have encouraged each contribution to: i) synthesize historical theoretical ideas within modern frameworks that have emerged in the last ten to twenty years (e.g., bridging population interactions to whole food webs); ii) describe novel theory that has emerged in the last twenty years from historical empirical areas (e.g., macro-ecology); and iii) cover the booming area of theoretical ecological applications (e.g., disease theory and global change theory). The result is a forward-looking synthesis that will help guide the field through a further decade of development and discovery. Early chapters are collectively more about the building blocks for understanding dynamics of interacting species in time and space, including coexistence, consumer-resource and biological lags, stochasticity, and stage structure. Later, chapters are representative of the study of networks, a large growth area. These include matrix theory, mutualistic networks, community structure, body size and system structure, and network ecology. Novel concepts such as trait-based models and meta-population ecology are then presented. Applied theoretical ecology is then covered by chapters on disease ecology, climate change dynamics, and stable states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call