Abstract
This paper presents a conception of a system designed for monitoring combustion process in a multi-cylinder combustion engine. The proposed system is based on the application of a pressure sensor installed in one of the engine’s cylinders. The analysis of the combustion process in the remaining cylinders is possible as a result of analyzing the course of the rotational speed by means of a sensor with a large resolution integrated with engine control phase sensor. This paper presents results of the initial testing of its operation and results of research into a system named CPMOS (Combustion Process Onboard Monitoring System) dedicated to a self-ignition engine of an off-highway vehicle. The use of an algorithm which applies a synthesis of a pressure sensor signal and rotational speed sensor offers the possibility of gaining a reconstructed course of pressure in all cylinders in the engine. The proposed measurement of pressure in a cylinder not involving fuel injection system can provide more detailed information regarding the course of the combustion process in the particular cylinders. The proposed concept of the CPMOS system leads to a decrease in the overall system cost as a result of the application of a single pressure sensor in a single cylinder. The future potential application of the monitoring of the combustion in each cylinder can enable the improvement of the operating parameters of the cylinders as a result of optimizing the control of the fuel injection system, EGR system and systems used for limiting exhaust gases used in the vehicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.