Abstract

Spectral methods (SM) for uncertainty quantification are introduced. We start by introducing the transition between the deterministic and the stochastic frameworks, using the one-dimensional heat equation as an example. A simple Monte Carlo (MC) technique to solve the stochastic equation is introduced, together with its main advantages and drawbacks. The Karhunen–Loeve expansion, a crucial tool to construct other (SM), is presented. Non-intrusive spectral projection (NISP) and Galerkin methods are introduced, and comparisons against the MC approach are discussed. The main differences between NISP and Galerkin methods are also highlighted. All the sections in the chapter are consistently illustrated with the one-dimensional heat diffusion problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.