Abstract
We are concerned with existence results in shape optimization as well as with necessary conditions for optimality. In the first section we give existence results for a weak shape formulation of Bernoulli-like free boundary problems for stationary potential flows. In the second section it is shown how the Bounded Perimeter-constraint can apply to give an existence result for control in the Transient Wave Equation. The third section deals with the very definition of shape deri vatives and with results on the structure of the derivatives. The fourth section deals with the shape variational free boundary problem associated with the Stokes stationary fluid. It underlines that the free boundary condition cannot be achieved in such a linearized modelling. Also, we give existence and continuity results obtained by a penalty approach (via transmission “two-fluid” problems) which apply also to unilateral problems. Finally, the last section extends an existence result for eigenvalues of the Laplace operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.