Abstract

Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.