Abstract

Abstract Automating discovery in mathematics and science will require sophisticated methods of information extraction and abstract reasoning, including models that can convincingly process relationships between mathematical elements and natural language, to produce problem solutions of real-world value. We analyze mathematical language processing methods across five strategic sub-areas (identifier-definition extraction, formula retrieval, natural language premise selection, math word problem solving, and informal theorem proving) from recent years, highlighting prevailing methodologies, existing limitations, overarching trends, and promising avenues for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.