Abstract

This tutorial begins with an overview of the major branches of machine learning (ML) and then provides more thorough coverage of deep neural networks. It covers key concepts, tools, experimental methods, applications, evaluation measures and associated issues for supervised learning (regression and classification), unsupervised learning (clustering and dimensionality reduction), semi-supervised and active learning (which combine the former approaches), and reinforcement learning. The deep neural network discussion covers convolutional neural networks (CNNs), recurrent neural networks (RNNs), word embeddings and related techniques. The discussion will be grounded on digital library (DL) - related applications and will highlight issues, techniques and tools associated with processing big data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.