Abstract

In this part of the book, we propose a novel algorithmic framework for an advanced virtual brush to be used in interactive digital painting. The framework comprises the following components: a geometric model of the brush using a hierarchical representation that leads to substantial savings in every step of the painting process; fast online brush motion simulation assisted by offline calibration that guarantees an accurate and stable simulation of the brush’s dynamic behavior; a new pigment model based on a diffusion process of random molecules that considers delicate and complex pigment behaviors at dipping time as well as during painting; and a user-adaptation component that enables the system to cater for the personal painting habits of different users. A prototype system has been implemented based on this framework. Compared with other virtual brushes, this new system is designed to present a realistic brush in the sense that the system accurately and stably simulates the complex painting functionality of a running brush, and therefore is capable of creating high-quality digital paintings with minute aesthetic details that can rival the real artwork. The advanced features also give rise to a high degree of expressiveness of the virtual brush that the user can comfortably manipulate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.