Abstract

Introduction to integrable many-body systems IThis is the first volume of a three-volume introductory course about integrable (exactly solvable) systems of interacting bodies. The aim of the course is to derive and analyze, on an elementary mathematical and physical level, the Bethe ansatz solutions, ground-state properties and the thermodynamics of integrable many-body systems in many domains of physics: Nonrelativistic one-dimensional continuum Fermi and Bose gases; One-dimensional quantum models of condensed matter physics like the Heisenberg, Hubbard and Kondo models; Relativistic models of the (1+1)-dimensional Quantum Field Theory like the Luttinger model, the sine-Gordon model and its fermionic analog the Thirring model; Two-dimensional classical models, especially the symmetric Coulomb gas. In the first part of this volume, we deal with nonrelativistic one-dimensional continuum Fermi and Bose quantum gases of spinless (identical) particles with specific types of pairwise interactions like the short-range δ-function and hard-core interactions, and the long-range 1/

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call