Abstract
There is a growing interest in leveraging differential geometry in the machine learning community. Yet, the adoption of the associated geometric computations has been inhibited by the lack of a reference implementation. Such an implementation should typically allow its users: (i) to get intuition on concepts from differential geometry through a hands-on approach, often not provided by traditional textbooks; and (ii) to run geometric machine learning algorithms seamlessly, without delving into the mathematical details. To address this gap, we present the open-source Python package geomstats and introduce hands-on tutorials for differential geometry and geometric machine learning algorithms-Geometric Learning-that rely on it. Code and documentation: github.com/geomstats/geomstats and geomstats.ai.
Highlights
Introduction to Geometric Learning inPython with GeomstatsNina Miolane‡∗, Nicolas Guigui§, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, ThomasGerald, Paul Chauchat, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec https://youtu.be/Ju-Wsd84uG0 !Abstract—There is a growing interest in leveraging differential geometry in the machine learning community
We demonstrate that any standard machine learning algorithm can be applied to data on manifolds while respecting their geometry
We find published results that show how useful geometry can be with data on the Symmetric Positive Definite (SPD) manifold (e.g [WAZF18], [NDV+14])
Summary
Nina Miolane‡∗, Nicolas Guigui§, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, Thomas. The adoption of the associated geometric computations has been inhibited by the lack of a reference implementation Such an implementation should typically allow its users: (i) to get intuition on concepts from differential geometry through a hands-on approach, often not provided by traditional textbooks; and (ii) to run geometric machine learning algorithms seamlessly, without delving into the mathematical details. To address this gap, we present the open-source Python package geomstats and introduce hands-on tutorials for differential geometry and geometric machine learning algorithms - Geometric Learning - that rely on it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.