Abstract

AbstractThis chapter introduces some basic terminology. First, we define a dynamical system and give several examples, including symbolic dynamics. Then we introduce the notions of orbits, invariant sets, and their stability. As we shall see while analyzing the Smale horseshoe, invariant sets can have very complex structures. This is closely related to the fact discovered in the 1960s that rather simple dynamical systems may behave “randomly,” or “chaotically.” Finally, we discuss how differential equations can define dynamical systems in both finite- and infinite-dimensional spaces.KeywordsState SpacePeriodic SolutionPeriodic OrbitJacobian MatrixPhase PortraitThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.