Abstract
This paper presents a quasilocal method of studying the physics of dynamical black holes in numerical simulations. This is done within the dynamical horizon framework, which extends the earlier work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal surfaces and study their time evolution. An important ingredient is the calculation of the signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We describe our numerical implementation of these concepts and apply them to three specific test cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron star, and a nonaxisymmetric black hole collision with nonzero initial orbital angular momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.