Abstract

Distributed geographic information processing (DGIP) refers to the processing of geographic information across dispersed processing units through computer networks and other communication channels. DGIP has become increasingly important in the past decade with the popularization of computer networks, the growth of distributed data repositories, and the collaboration of researchers, developers, and users among multiple disciplines using geographic information. DGIP focuses on the technical research on how to allocate and process geographic information resources in a distributed environment to achieve a specific application objective (such as the implementation of virtual globes). The geographic information resources may include sensors, geographic data, models, information, knowledge, visualization tools, computers, computer networks, software components, architecture, security strategies, applications, and human resources. This introduction to DGIP research defines six research areas: (a) DGIP architecture, including service-oriented architecture (SOA) and Federal Enterprise Architecture (FEA), (b) spatial computing issues for leveraging and allocating computing power to process geographic information, (c) geographic information-processing models for decoupling and integrating models for specific or cross application domains, (d) interoperability, defining the standards and interfaces for sharing processing units, (e) intelligence in DGIP for leveraging knowledge, and (f) applied sciences. The papers selected for this special issue cover all six areas. DGIP will become increasingly important with the globalization of our daily lives across planet Earth and the need to leverage distributed geographic information resources for problem solving and decision making in the global environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call