Abstract

With the rapid development of genome sequencing technology and bioinformatics in recent years, it has become possible to measure thousands of omics data which might be associated with the progress of diseases, i.e."high-dimensional data" . This type of omics data have a common feature that the number of variable p is usually greater than the observation cases n, and often has high correlation between independent variables. Therefore, it is a great statistical challenge to identify really meaningful variables from omics data. This paper summarizes the methods of Bayesian variable selection in the analysis of high-dimensional data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.