Abstract

INTRODUCTION TO ARNOLD’S PROOF OF THE KOLMOGOROV–ARNOLD–MOSER THEOREM This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals. Features • Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics. • Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations. • Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.