Abstract

Different methods of using spatial information in image classification are presented. One approach is to quantify image texture to produce features for use in classifiers, and there are various methods with adjustable parameters for texture quantification. The produced features are numerous and are in different discriminating image classes. Therefore, there is a need for selecting their optimum combination, or to alternatively create a set of features that abstract their class discernibility. Inspired by spectral normalized difference indices, the concept of the spatio-spectral index is introduced in this article to produce indices from a series of spatial features created from image spectral bands. In the proposed method, the produced spatio-spectral indices for each class are used as the abstract of spatial features. Along with the image spectral bands, they are used as new feature forms for supervised classification. Features with maximum and minimum values in each class were selected after production of the average vector in the feature space, and the removal of features with a small variation range. Next, non-repetitive band pairs were selected and spatio-spectral indices were produced. Using this method, the number of selected spatial features was at most twice the number of classes and was used to produce spatio-spectral indices. Use of the produced features in classification improves classification accuracy significantly (about 30% and 6% in the two test images used here) by enhancing class discrimination and decreasing computational time. This method is also explicit and direct, with no need to use iterative optimization processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.