Abstract

The nucleoprotein (NP) of influenza A virus (IAV) is associated with many different functions including host range restriction. Multiple sequence alignment analyses of 748 NP gene sequences from GenBank revealed a highly conserved region of 60 nucleotides within the ORF at the 3′-ends of the cRNA, in some codons even silent mutations were not found. This suggests that the RNA structure integrity within this region is crucial for IAV replication. To explore the impact of these conserved nucleotides for viral replication we created mutant viruses with one or more silent mutations in the respective region of the NP gene of the IAV strain A/WSN/33 (H1N1) (WSN). Assessment of viral replication of these WSN mutant viruses showed significant growth disadvantages when compared to the corresponding parental strain. On the basis of these findings we tested whether the attenuation of IAV by introduction of silent mutations into the NP gene may serve as a strategy to create a live attenuated vaccine. Mice vaccinated with the attenuated WSN mutant survived a lethal challenge dose of wild type WSN virus or the mouse adapted pandemic H1N1v strain A/Hamburg/4/2009. Thus, introduction of silent mutations in the NP of IAV is a feasible approach for a novel vaccination strategy allowing attenuation of the master strain but leaves the antigenicity of the gene product unaltered. This principle is potentially applicable for all viruses with segmented genomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.