Abstract

The spreading of malaria parasites, Plasmodium falciparum, with resistance to all known drugs calls for novel classes of inhibitors with new modes of action. Recently, we discovered and validated the plasmodial l-lactate transporter, PfFNT, as a novel antimalarial drug target. However, treatment of parasites with a screening hit from the malaria box compound collection, MMV007839, gave rise to a PfFNT Gly107Ser resistance mutation decreasing inhibitor affinity by 2 orders of magnitude. Here, we show that newly introduced nitrogen atoms into the inhibitor scaffold can act as hydrogen bond acceptor sites to the serine hydroxyl. The gain in affinity led to almost equal inhibition of wildtype PfFNT and the Gly107Ser mutation. The most potent inhibitor of this work, BH267.meta, killed cultured P. falciparum parasites with nanomolar efficacy and did not give rise to new resistance formation in vitro. Its deduced pharmacokinetic properties appear suitable for further drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.