Abstract

It is known that niobium practically does not form cluster chalcogenide compounds of the {M6(μ3-Q8)} type, which are widespread in the chemistry of group 6 and 7 metals. This work reports the preparation of a series of polymeric and discrete niobium-containing heterometallic clusters based on the {Re5Nb(μ3-S8)} and {Re5Nb(μ3-Se8)} cores. The compounds were prepared by the high-temperature reaction between rhenium and niobium dichalcogenides in a KCN melt. The 1D polymers K5[Re5NbQ8(CN)5] (Q = S or Se), which were formed as a result of the reaction, crystallize in the structural type of K6[Mo6Se8(CN)5], similar to the previously reported heterometallic clusters K6[Re6-xMoxQ8(CN)5] (x = 2-3). The polymers were solubilized to form discrete anionic clusters [Re5NbQ8(CN)6]4-. The structure and properties of the new clusters were investigated using a combination of X-ray diffraction analysis, UV/vis spectroscopy, high-resolution electrospray mass spectrometry, cyclic voltammetry, and DFT calculations. Among other features, the compounds showed high electrochemical activity, being able to form three redox states in solution with reversible transitions. It was found that redox potentials of the isoelectronic octahedral clusters demonstrate a strong cathodic shift in the sequence [Re5OsSe8(CN)6]3- > [Re6Se8(CN)6]4- > [Re5MoSe8(CN)6]5- > [Re5NbSe8(CN)6]6-, illustrating the effect of systematic changes in the composition of octahedral cluster cores on their properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.