Abstract

Two cytokines, fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are considered to be the essential regulators of dendritic cell (DC) development in vivo. However, the combined effect of Flt3-L and GM-CSF on human DCs has not been evaluated in vivo. In this study, we, therefore, aimed at evaluating this using a humanized mouse model. Humanized non-obese diabetic/SCID/Jak3null (hNOJ) mice were constructed by transplanting hematopoietic stem cells from human umbilical cord blood into newborn NOJ mice, and in vivo transfection (IVT) was performed by hydrodynamic injection-mediated gene delivery using plasmids encoding human Flt3-L and GM-CSF. Following IVT, Flt3-L and GM-CSF were successfully induced in hNOJ mice. At 10 days post-IVT, we found, in the spleen, that treatment with both Flt3-L and GM-CSF enhanced the reconstitution of two myeloid DC subsets, CD14−CD1c+ conventional DCs (cDCs) and CD14−CD141+ cDCs, in addition to CD14+ monocyte-like cells expressing CD1c and/or CD141. GM-CSF alone had less effect on the reconstitution of these myeloid cell populations. By contrast, none of the cytokine treatments enhanced CD123+ plasmacytoid DC (pDC) reconstitution. Regardless of the reconstitution levels, three cell populations (CD1c+ myeloid cells, CD141+ myeloid cells, and pDCs) could be matured by treatment with cytokines, in terms of upregulation of CD40, CD80, CD86, and CD184/CXCR4 and downregulation of CD195/CCR5. In particular, GM-CSF contributed to upregulation of CD80 in all these cell populations. Interestingly, we further observed that Foxp3+ cells within splenic CD4+ T cells were significantly increased in the presence of GM-CSF. Foxp3+ T cells could be subdivided into two subpopulations, CD45RA−Foxp3hi and CD45RA−Foxp3lo T cells. Whereas CD45RA−Foxp3hi T cells were increased only after treatment with GM-CSF alone, CD45RA−Foxp3lo T cells were increased only after treatment with both Flt3-L and GM-CSF. Treatment with Flt3-L alone had no effect on the number of Foxp3+ T cells. The correlation analysis demonstrated that the development of these Foxp3+ subpopulations was associated with the maturation status of DC(-like) cells. Taken together, this study provides a platform for studying the in vivo effect of Flt3-L and GM-CSF on human DCs and regulatory T cells.

Highlights

  • Dendritic cells (DCs) play a pivotal role in maintaining the immune responses [1, 2]

  • Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF), are considered to be the essential regulators of DC development in vivo: fms-related tyrosine kinase 3 ligand (Flt3-L) supports the development of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) derived from bone marrow (BM) progenitors, while GM-CSF contributes to the development of monocyte-derived DCs (MoDCs) as well as inflammation-induced myeloid DCs [3, 4, 10, 12, 13]

  • When humanized NOJ (hNOJ) mice were injected with the Flt3-L-expressing plasmid (Group F), the GM-CSF-expressing plasmid (Group G), or both plasmids (Group F + G), the corresponding cytokines could be induced within 3 days of IVT

Read more

Summary

Introduction

Dendritic cells (DCs) play a pivotal role in maintaining the immune responses [1, 2]. One study using knock-out mice showed that combined deficiency of Flt3-L and GM-CSF, rather than a single deficiency of either cytokine, massively reduced DCs in the periphery and monocyte-macrophage DC progenitors and further downstream common DC progenitors in the BM, indicating the concerted action of Flt3-L and GM-CSF on DC homeostasis in vivo [13]. Cytokines, such as IL-3, IL-4, IL-15, TNF-α, and TGF-β are selectively responsible for the development and maturation of specific DC subsets, which affects the type of immune response that develops [6, 7]. In humans, the effect of Flt3-L and GM-CSF singly or in combination in the absence of any other cytokine on the development of DCs remains to be evaluated in vivo

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.