Abstract

BackgroundBioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate, and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the assembly technique has allowed for wide distribution to a large number of users -- the parts are reusable and interchangeable during the assembly process. The standard assembly process, however, has some limitations. In particular it does not allow for modification of already assembled biological circuits, addition of protein tags to pre-existing BioBrick parts, or addition of non-BioBrick parts to assemblies.ResultsIn this paper we describe a simple technique for rapid generation of synthetic biological circuits using introduction of customized inserts. We demonstrate its use in Escherichia coli (E. coli) to express green fluorescent protein (GFP) at pre-calculated relative levels and to add an N-terminal tag to GFP. The technique uses a new BioBrick part (called a BioScaffold) that can be inserted into cloning vectors and excised from them to leave a gap into which other DNA elements can be placed. The removal of the BioScaffold is performed by a Type IIB restriction enzyme (REase) that recognizes the BioScaffold but cuts into the surrounding sequences; therefore, the placement and removal of the BioScaffold allows the creation of seamless connections between arbitrary DNA sequences in cloning vectors. The BioScaffold contains a built-in red fluorescent protein (RFP) reporter; successful insertion of the BioScaffold is, thus, accompanied by gain of red fluorescence and its removal is manifested by disappearance of the red fluorescence.ConclusionsThe ability to perform targeted modifications of existing BioBrick circuits with BioScaffolds (1) simplifies and speeds up the iterative design-build-test process through direct reuse of existing circuits, (2) allows incorporation of sequences incompatible with BioBrick assembly into BioBrick circuits (3) removes scar sequences between standard biological parts, and (4) provides a route to adapt synthetic biology innovations to BioBrick assembly through the creation of new parts rather than new assembly standards or parts collections.

Highlights

  • BioBrick standard biological parts are designed to make biological systems easier to engineer

  • We demonstrate a solution to this problem by designing a new BioBrick part, termed BioScaffold (Figure 1e and 1f), that can be excised from intact BioBrick circuits and replaced with other DNA sequences (e.g., ribosome binding sites (RBSs))

  • Maximum excision capacity of commercially available Type IIB REases As described in the preceding section, the prototype BioScaffold is primarily useful for introducing RBSs (Circuit Tuning BioScaffold) or N-terminal protein tags (Protein Engineering BioScaffold) into BioBrick circuits that do not contain internal PsrI restriction enzyme recognition sites or red fluorescent protein (RFP) reporters

Read more

Summary

Introduction

BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate, and modify). The standardization of the assembly technique has allowed for wide distribution to a large number of users – the parts are reusable and interchangeable during the assembly process. The standard assembly process, has some limitations In particular it does not allow for modification of already assembled biological circuits, addition of protein tags to preexisting BioBrick parts, or addition of non-BioBrick parts to assemblies. A number of existing methods could be used to optimize circuits by rebuilding [29] or reengineering [21,35] them It is desired, to minimize the number of steps and permit rapid modification [35,36,37,38,39,40,41]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.