Abstract

The effects of exposure of polymer surfaces to atmospheric pressure plasma (APP) on detergency were investigated from the viewpoint of pretreatment to cleaning in aqueous systems using three PET substrates: film, mesh, and fabric. The PET substrates were soiled with stearic acid as a model oily contaminant, and were treated with the APP jet immediately before cleaning. Stir washing in aqueous solutions with and without alkali or anionic surfactant was performed, and then the detergency was evaluated from the microscopic image analysis or surface reflectance measurement. For all PET samples and detergent solutions, APP exposure was found to promote the removal of stearic acid. Contact angle measurements showed that APP exposure enhanced the hydrophilicity of PET and stearic acid. The increase in the surface oxygen concentration on PET and stearic acid due to the APP exposure was also observed by XPS analysis. The simultaneous oxidation of the PET substrate and stearic acid soil by the APP pretreatment resulted in detergency improvement via surface hydrophilization. Furthermore, microscopic observations suggested that the collapse of crystallized stearic acid deposited on the PET substrate by APP heating facilitated its removal. In situ detergency evaluation by a quartz crystal microbalance technique confirmed that the removal of stearic acid from the PET substrate was promoted by the APP exposure. The experimental findings of this study demonstrate the effectiveness of the APP exposure before cleaning in aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call