Abstract
A hydroxyapatite whisker (w-HA) was synthesized via dissolution-precipitation by forming calcium-ethylene diamine tetra acetic acid (Ca-EDTA) complexing. The hydroxyapatite whisker was formed with precipitation of Ca2+ along the c-axis due to the space inhibition of Ca-EDTA complex during refluxing. The op-w-HA (oligomeric poly(lactic acid) modified w-HA), p-w-HA (poly(L-lactide) modified w-HA) and pc-w-HA (poly(L-lactide) and cyclodextrin modified w-HA) were obtained via the surface modification of w-HA. The particle size, surface charge and biocompatibility of theses modified w-HA particles were successfully adjusted. Among these materials, pc-w-HA exhibited nearly no toxicity, better adhesion to mesenchymal stem cells (MSCs) (5 times better than w-HA) and greater osteoinductivity among the obtained materials (40% of mineralized extracellular matrix higher than w-HA) due to better surface properties. Different kinds of powders (w-HA, p-w-HA and pc-w-HA) were blended with PLLA (poly(L-Lactide)) to form a composite material, respectively. The pc-w-HA/PLLA composite showed better mechanical properties (tensile strength of the pc-w-HA/PLLA composite was 22.3% higher than that of w-HA/PLLA), which could be attributed to mainly two factors including the structure preservation of w-HA bundles and pseudorotaxane linkage between PLA-cyclodextrin and PLLA. The MSCs adhesion of the pc-w-HA/PLLA composite was much better due to balanced hydrophilicity/hydrophobicity and surface roughness. This surface modification method could provide a new and effective strategy for the preparation of bioresorbable composite material with great bioactivity and mechanical property, which has great potential in the medical device industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.