Abstract

Expression of the L1 and L2 beta-lactamase genes is generally regulated by a LysR type regulator of the AmpR in Stenotrophomonas maltophilia. The ampR gene is located immediately upstream of L2 and is transcribed divergently, forming an ampR-L2 module. The ampR-L2 modules of 16 S. maltophilia isolates were analyzed, revealing that the ampR-L2 intergenic (IG) regions show a significant genetic diversity, whereas AmpR proteins are highly conserved. The induction potential of the different AmpR toward the different ampR-L2 IG regions was evaluated by introducing the various IG-xylE transcriptional fusion constructs into a wild S. maltophilia strain. The induction levels achieved in the various AmpR-IG pairs display quantitative differences; meanwhile, the host beta-lactamase activity, in some cases, is attenuated by the introduced IG segment. Similar beta-lactamase attenuation phenomenon was observed in Enterobacter cloacae with an ampR-L2 IG segment of S. maltophilia. A concept of oligonucleotides attenuator for the development of an antimicrobial agent is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.