Abstract

An air-segmentation approach has been introduced to a feedback-based and subsequent fixed triangular wave-controlled flow ratiometry to suppress axial dispersion in flow titration. The flow rate of a base solution containing an indicator is linearly varied with a control signal, Vc, supplied by a computer. The solution is merged with an acid solution under a constant total flow rate. Air is introduced to the merged solution in order to segment the solution with air bubbles. Both phases are led to a UV/Vis detector without phase separation. Air signals are removed by signal processing. The effect of the lag time between the merging of solutions upstream and the sensing of the corresponding signal downstream is offset by feedback-based upward and downward Vc scans, and thus the Vc that gives the equivalence composition is determined. Subsequently, fixed triangular wave control is applied to a narrower Vc range with a higher scan rate to enhance the throughput rate (maximally 11.8 titrations/min). Air-segmentation has been found to be effective to reduce axial dispersion and to preserve the titrand/titrant composition upon their just being merged. Consequently, the applicable range is extended especially to lower titrand concentration. The proposed method has been successfully applied to various acid-base titrations, including the nonaqueous titration of the Japanese Pharmacopoeia drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.